Insulin facilitation of muscle protein synthesis following resistance exercise in hindlimb-suspended rats is independent of a rapamycin-sensitive pathway.
نویسندگان
چکیده
Hindlimb suspension (HS) results in rapid losses of muscle mass, which may in part be explained by attenuated rates of protein synthesis. Mammalian target of rapamycin (mTOR) regulates protein synthesis and has been implicated as a potential mediator of the muscle mass decrement with HS. This study examined the effect of resistance exercise, a muscle hypertrophy stimulant, on rates of protein synthesis after 4 days of HS in mature male Sprague-Dawley rats. Flywheel resistance exercise (2 sets x 25 repetitions) was conducted on days 2 and 4 of HS (HSRE). Sixteen hours after the last exercise bout, soleus muscles were assessed for in vitro rates of protein synthesis, with and without insulin (signaling agonist) and/or rapamycin (mTOR inhibitor). Results demonstrated that soleus mass was reduced (P < 0.05) with HS, but this loss of mass was not observed (P > 0.05) with HSRE. Muscle protein synthesis was diminished (P < 0.05) with HS, with or without insulin. HSRE also had reduced rates of synthesis without insulin; however, insulin administration yielded higher (P < 0.05) rates in HSRE compared with HS or control. Rapamycin diminished protein synthesis in all groups (P < 0.05), but insulin rescued synthesis rates in HS and HSRE to levels similar to insulin alone for each group, suggesting that alternate signaling pathways develop to increase protein synthesis with HS. These results demonstrate that the capacity for an augmented anabolic response to resistance exercise is maintained after 4 days of HS and is independent of a rapamycin-sensitive pathway.
منابع مشابه
The effect of high intensity interval training on complex mammalian target of Rapamycin 1 (mTORC1) pathway in Flexor hallucis longus muscle (FHL) of streptozotocin-induced diabetic rats
Background and Objective: The most well-known mechanism for regulating complex mammalian target of rapamycin 1 (mTORC1) pathway activity is the insulin/IGF-1-dependent pathway in skeletal muscles. The role of high intensity interval training (HIIT) exercise has not yet been studied on this important pathway in protein synthesis among people with type 2 diabetes. The purpose of the present study...
متن کاملInsulin stimulation of muscle protein synthesis in obese Zucker rats is not via a rapamycin-sensitive pathway.
The obese Zucker rat is resistant to insulin for glucose disposal, but it is unknown whether this insulin resistance is accompanied by alterations of insulin-mediated muscle protein synthesis. We examined rates of muscle protein synthesis either with or without insulin in lean and obese Zucker rats with the use of a bilateral hindlimb preparation. Additional experiments examined insulin's effec...
متن کاملInsulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP kinase pathway.
Recent studies have implicated the mTOR-signaling pathway as a primary component for muscle growth in mammals. The purpose of this investigation was to examine signaling pathways for muscle protein synthesis after resistance exercise. Sprague-Dawley rats (male, 6 mo old) were assigned to either resistance exercise or control groups. Resistance exercise was accomplished in operantly conditioned ...
متن کاملInvolvement of the rapamycin-sensitive pathway in the insulin regulation of muscle protein synthesis in streptozotocin-diabetic rats.
Insulin resistance in 3-day streptozotocin (STZ)-treated rats was manifested by the lack of antiproteolytic action of insulin as well as by a reduction of its stimulatory effect on protein synthesis (-60% compared with the control group) in epitrochlearis muscle incubated in vitro. In the present study, we have investigated the diabetes-associated alterations in the insulin signalling cascade, ...
متن کاملTHE EFFECT OF ENDURANCE TRAINING ON PROTEIN KINASE-B AND MECHANICAL TARGET OF RAPAMYCIN IN THE LEFT VENTRICLE OF THE HEART OF DIABETIC RATS INDUCED BY STREPTOZOTOCIN AND NICOTINAMIDE
Background: The pathway of insulin messengers is so important that diabetes can lead to disruption of this pathway. However, the aim of this study was to investigate the effect of 8 weeks of endurance training on protein Kinase-B (PKB or AKT) and mechanical target of rapamycin (mTOR) in the left ventricle of the heart of diabetic rats induced by streptozotocin and nicotinamide. Methods: In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 287 6 شماره
صفحات -
تاریخ انتشار 2004